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In {1, 2] oscillations of a rod with current flowing aleng its suiface
were studied. A dispersion equation was obtained for longitudinal and
transverse oscillations. We consider elastic oscillations of an infinite
rod with current flowing along its surface when a uniform constant
longitudinal magnetic field is present outside the rod. The dispersion
equation for propagation of elastic oscillations is obtained and par-
ticular cases of longitudinal and transverse oscillations, and surface
waves as well, are considered.

§1. statement of the Problem and Boundary Conditions. Let a
constant current I flow along the surface of an ideally conducting rod
of radius ¢; outside the rod there is a uniform constant Jongitudinal
magnetic field. Then field strength vector H in cylindrical coordinate
system r, ¢, and z has components
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The field H generates a magnetic pressure p = 1/8 H%/r on the
surface of the rod.
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Here p is the density of the material, and A, and y are Lamé con-
stants, The general solution to Eq. (1) has the form [1]
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Here A, B, and C are arbitrary constants.

Boundary conditions on the perturbed swiface S’ are as follows:

a) because the rod material is ideally conducting, the normal
component of the field H' is zero

H.on =3; 1.4)

b) the sums of magnetic pressure p outside the rod and stresses
within the rod in projections on the r, ¢, and z axies are zero,
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Here n' is the external normal to §'; nj are its components; H' =
= H + h is the excited magnetic field: 0;," = 0;,° + 0y, is the stress
where 0;,° is the stress due to the effect of the field H;
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The exrernal normal n' to S' is written approximately as
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Herer', ¢°, and 2° are unit vectors; on surfaces §° (forr = a),
u; is a function only of ¢ and z.

On the surface S’ we have r = a + ug(q, ¢, z); therefore, for field
H' or $', we obtain
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which is accurate to within terms of the first order of smallness with
respect to juf.

It follows from the Maxwell equations that divh =0 and rot h =
=0 outside the rod. We now have
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Here Kpy(kr) is a modified m-th order Bessel function of the second
kind. The arbitrary constant L issuchthat the field vanishes atinfinity.
within the rod the field is zero. From (1.8) and {1.9), with the same
accuracy, we have
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Substituting (1.6), (1.7), (1.8), (1.9) and (1.10) into (1.4) and
(1.5) we obtain o L
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All quantities in (1.10) and (1.11) are taken forr = a.

Using (1.3) for amplitudes of the displacement vector and relation-
ships between stresses and elastic deformations, we obtain the following
system from (1.11) for finding the constants:
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Here E is Yong's modulus and the coefficients bij are found from
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In the Bessel functions, the primes denote derivatives with respect
to the arguments or and fr forr = a.
§2. Dispersion Equation. System (1.12) has a nontrivial solution
because its determinant must be zero:
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We introduce the dimensionless quantities:
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Here y is the Poisson coefficient. The elements of the determinant
take the form
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terms greater than the second order of smallness. The equation is then
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§3. Longitudinal Oscillations (Constrictions). These oscillations Prg = — QgL (¥) — Y, (Y2 — 22 — 8) ¢, (X),
will occur if we set m =0 in (2.5) and (2.6). The left side of (2.5) is Py =4 — Y, V2 — L (Y),
expanded in powers of elements in the second column and, by making Pas = Mg Y2 4 9,71 (V) — 4oy (),
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where C is the Euler constant.

If we substitute (3.3) into (3.2) and (3.1), ignore terms greater n=4¥?—3 -2 +v)[h2+ (d 2k + zhy)2 Ps (2)],
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§5. surface Waves. For surface waves x > 1, the quantities X and
Y will be imaginary; then [4]

Pra (18) 22 118, Y (B) = — 1/E (E 3> 1). .1
After substituting in (5.1) and ignoring terms on the order of 1/g,
Eq. (2.5) with elements (2.6) becomes
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Letting by = hy = 0 in (5.2) we obtain a relationship for Rayleigh
surface waves [3].

The author expresses his appreciation to A. 1. Morozov.
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